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SUMMARY

This work is concerned with the numerical simulation of two-dimensional viscoelastic free surface flows
of a second-order fluid. The governing equations are solved by a finite difference technique based on
the marker-and-cell philosophy. A staggered grid is employed and marker particles are used to represent
the fluid free surface. Full details for the approximation of the free surface stress conditions are given.
The resultant code is validated and convergence is demonstrated. Numerical simulations of the extrudate
swell and flow through a planar 4:1 contraction for various values of the Deborah number are presented.
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1. INTRODUCTION

Industrial polymer processing frequently involves free surface flows of a complex fluid. Examples
of these are extrusion, fibre-spinning, container filling and wire coating. These problems have
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contributed to the motivation of the development of numerical methods so that these processes
may be studied through simulation. The Maxwell, Oldroyd-B and PTT models have been consid-
ered by many researchers and a variety of techniques for simulating viscoelastic flows governed
by these models have been presented, e.g. References [1–7], to cite a few. The problems inves-
tigated have been the contraction 4:1 problem in both two dimensions (e.g. References [5, 7, 8]),
and in three dimensions (e.g. References [6, 9]); extrudate swell problems have been considered
by, among others, Brasseur et al. [1], Ryan and Dutta [10], Crochet and Keunings [11] and
Tomé et al. [12].

On the other hand, less attention has been paid to viscoelastic flows governed by the Criminale–
Ericksen–Filbey (CEF) constitutive relationship, which is sometimes simply known as the second-
order fluid. Gast and Ellington [13] employed the Fidap code [14] to compute extrudate swells for
the CEF equation in the case of a fluid where the viscoelasticity was minimal.

The purpose of this work is to present a numerical method for solving the two-dimensional
second-order fluid flow model, which is capable of resolving free surface flows where the vis-
coelasticity is not necessarily small. We formulate a MAC (marker-and-cell)-type [15] numer-
ical algorithm for solving the governing equations and develop a finite difference method for
solving the basic equations. The method described herein is validated by using exact solutions for
two-dimensional channel flow; numerical results of the time-dependent extrudate swell and 4:1
contraction flows are also presented to illustrate the capability of the method.

2. BASIC EQUATIONS

The equations governing the flow of a second-order fluid are (see Reference [16]) the equation of
motion

�

(
�u
�t

+ ∇ · uu
)

=−∇ p + ∇ · s+ �g (1)

and the mass conservation equation (assuming incompressibility)

∇ · u= 0 (2)

where s is the extra-stress tensor which obeys the constitutive equation

s= �0[D + �2
�
D +�4(D · D)] (3)

The parameters �0, �2 and �4 are material properties and D is the rate-of-deformation tensor. The

tensor D and the upper convected derivative
�
D are given by

D= (∇u) + (∇u)T,
�
D = D

Dt
D − (∇u)TD − D(∇u) (4)

respectively. The symbol D/Dt refers to the material derivative and is defined by

D

Dt
D= �D

�t
+ ∇ · (uD)

Here, as usual, u, s, p, �, denote the fluid velocity, the extra-stress tensor, pressure and density,
respectively, while g denotes the gravitational field.
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In order to solve Equations (1)–(3) it is necessary to specify initial and boundary conditions
for u. On rigid boundaries it is sufficient to have the no-slip condition (u= 0) and on inflows
the velocity is assumed to be given: u=Uinf. We consider a viscous fluid flowing into a passive
atmosphere (which we take to be at zero pressure) so that the normal and tangential components
of stress must be continuous across the free surface. In this work, we assume that surface tension
effects can be ignored so that, on the free surface, the conditions that must be satisfied are
(see Referfence [17])

n · (r · n) = 0 and m · (r · n) = 0 (5)

where n and m denote unit normal and tangent vectors to the surface and r= − pI + s is the
stress tensor.

We shall investigate two-dimensional free surface flows using Cartesian coordinates. In this
case, the constitutive equation (3) can be written in the form

s=
[

�xx �xy

�xy �yy

]
where

�xx = �0(D
xx + �xx ), �xy = �0(D

xy + �xy), �yy = �0(D
yy + �yy) (6)

and the rheological functions �xx ,�xy and �yy can be gathered in the form

�xx = �4

[
4

(
�u
�x

)2

+
(

�u
�y

+ �v

�x

)2
]

− �2

[
−D(Dxx )

Dt
+ 4

(
�u
�x

)2

+ 2
�u
�y

(
�u
�y

+ �v

�x

)]
(7)

�xy = − 2�2

[
−D(Dxy)

Dt
+ �u

�x
�v

�x
+ �u

�y
�v

�y

]
(8)

�yy = �4

[
4

(
�v

�y

)2

+
(

�u
�y

+ �v

�x

)2
]

− �2

[
−D(Dyy)

Dt
+ 4

(
�v

�y

)2

+ 2
�v

�x

(
�u
�y

+ �v

�x

)]
(9)

respectively. The components of the rate-of-deformation tensor are defined by Equation (4) and
may be written as

Dxx = 2
�u
�x

, Dxy = �u
�y

+ �v

�x
, Dyy = 2

�v

�y
(10)

The equation of motion (1) may be written as

�u
�t

+ �u2

�x
+ �uv

�y
=−�p

�x
+ �0

�

[
�2u
�x2

+ �2u
�y2

+ ��xx

�x
+ ��xy

�y

]
+ gx (11)

�v

�t
+ �uv

�x
+ �v2

�y
=−�p

�y
+ �0

�

[
�2v
�x2

+ �2v
�y2

+ ��xy

�x
+ ��yy

�y

]
+ gy (12)

using (6) and the continuity equation (2).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:599–627
DOI: 10.1002/fld



602 M. F. TOMÉ ET AL.

Let L ,U denote reference values for length and velocity. To solve Equations (7)–(12) we shall
employ the following nondimensionalization:

x = Lx̄, y = L ȳ, u =Uū, v =U v̄, t = L

U
t̄, p= �U 2 p̄ (13)

Introducing (13) into Equations (6)–(12) we obtain the nondimensional equations (the bars have
been dropped for clarity)

�u
�x

+ �v

�y
= 0 (14)

�u
�t

+ �u2

�x
+ �uv

�y
=−�p

�x
+ 1

Re

[
�2u
�x2

+ �2u
�y2

+ ��xx

�x
+ ��xy

�y

]
+ 1

Fr2
gx (15)

�v

�t
+ �uv

�x
+ �v2

�y
=−�p

�y
+ 1

Re

[
�2v
�x2

+ �2v
�y2

+ ��xy

�x
+ ��yy

�y

]
+ 1

Fr2
gy (16)

�xx = 1

Re
(Dxx + �xx ), �xy = 1

Re
(Dxy + �xy), �yy = 1

Re
(Dyy + �yy) (17)

where Dxx , Dxy and Dyy are given by (10) and the rheological functions can be written as

�xx = �

[
4

(
�u
�x

)2

+
(

�u
�y

+�v

�x

)2
]

−De

[
−D(Dxx )

Dt
+4

(
�u
�x

)2

+2
�u
�y

(
�u
�y

+�v

�x

)]
(18)

�xy = − 2De

[
−D(Dxy)

Dt
+ �u

�x
�v

�x
+ �u

�y
�v

�y

]
(19)

�yy = �

[
4

(
�v

�y

)2

+
(

�u
�y

+�v

�x

)2
]

−De

[
−D(Dyy)

Dt
+4

(
�v

�y

)2

+2
�v

�x

(
�u
�y

+�v

�x

)]
(20)

where Re= �UL/�0, Fr =U/
√
Lg, De= �2U/L are the Reynolds number, the Froude number

and the Deborah number, respectively. The nondimensional number � is defined by � = �4U/L .
In steady shear flows, the material parameters �2 and �4 are related to the coefficients of the first
and second normal stress differences

�2 = 1

2�0

N1

(Dxy)2
(21)

�4 = 1

2�0

N2

(Dyz)2
(22)

where N1 = �xx −�yy and N2 = �yy −�zz are the first and second normal stress differences, respec-
tively. The material parameter �4 is found, experimentally, to be much less than �2
(see Reference [16]) and so, henceforth, �4 will be neglected.
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2.1. Computation of the rheological function �xy on rigid boundaries and inflows and outflows

When solving (15) and (16) the values of �xy are required both on inflows and outflows and also
required on the rigid boundaries. These can be obtained from (19) as follows.

• Rigid boundaries. If we consider rigid boundaries which are parallel to the x-axis we have

�u
�x

= 0,
�v

�x
= 0 and consequently

�v

�y
= 0, from mass conservation

By introducing these derivatives into (19) it is not difficult to show that �xy = 0 on the rigid
boundaries that are either parallel to the x-axis or to the y-axis.

• Inflows. If the velocity at the inflow is prescribed by u =Uinf and v = Vinf then the values of
�xy on inflows are the same as those for �xy on rigid boundaries. However, we shall have
inflows defined by u = u(y), v = 0 if the inflow is vertical, or u = 0, v = v(x) if the inflow is
horizontal; the velocity u(y) (or v(x)) is a parabolic function of y (or x). In this case, it can
be shown that the value of �xy on inflows is zero.

• Outflows. At the fluid exit we have the condition �uT /�n = 0 where uT is the tangential
velocity to the outflow and n is the normal direction. Thus, if the outflow is situated parallel
to the y-axis we have �v/�x = 0; in this case, it can be found that �xy = 0.

3. NUMERICAL METHOD

To solve Equations (14)–(20) we employ a methodology based on the GENSMAC algorithm (see
Reference [18]). We suppose that the velocity field u(x, tn) is known and boundary conditions for
velocity and pressure are given. The velocity and pressure fields at time t = tn + �t are calculated
as follows.

First, by using u(x, tn) we compute the components of the rate-of-deformation tensor, Dxx , Dxy

and Dyy and then calculate the rheological functions �xx , �xy, �yy everywhere on the mesh; the
finite difference equations for calculating �xx , �xy, �yy are given in Section 4.1. Now, let p̃(x, t)
be a pressure field which coincides with the correct pressure condition on the free surface. This
pressure field is calculated from Equation (5); details on the calculation of p̃(x, t) are given in
Section 4.2. Inserting p̃(x, t) into (15) and (16) we compute an intermediate velocity field ũ(x, t)
from

�ũ
�t

+ �u2

�x
+ �uv

�y
=−� p̃

�x
+ 1

Re

[
�2u
�x2

+ �2u
�y2

+ ��xx

�x
+ ��xy

�y

]
+ 1

Fr2
gx (23)

�̃v

�t
+ �uv

�x
+ �v2

�y
=−� p̃

�y
+ 1

Re

[
�2v
�x2

+ �2v
�y2

+ ��xy

�x
+ ��yy

�y

]
+ 1

Fr2
gy (24)

with ũ(x, tn) =u(x, tn) using the appropriate boundary conditions for ũ(x, t) at t = tn .
Equations (23) and (24) are solved by an explicit finite difference method (essentially Euler’s
method: it is first order in time and second order in space). It can be shown (see Reference [18])
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that ũ(x, t) possesses the correct vorticity at time t . However, ũ(x, t) does not conserve mass. Let
u(x, t) be defined by

u(x, t) − ũ(x, t) = −∇�(x, t) (25)

where �(x, t) is a function having the property

∇2�(x, t) = ∇ · ũ(x, t) (26)

Thus, u(x, t) conserves mass and possesses the correct vorticity at time t . An equation for pressure
is obtained as follows. By subtracting (15) from (23) and (16) from (24) we can write

�(u − ũ)

�t
=−∇(p(x, t) − p̃(x, t)) (27)

Now, introducing (25) into (27), yields

− �
�t

∇�(x, t) = −∇(p(x, t) − p̃(x, t)) (28)

and interchanging the operators in (28) we obtain

p(x, t) = p̃(x, t) + ��(x, t)
�t

(29)

which is evaluated as

p(x, t) = p̃(x, t) + �(x, t)
�t

(30)

4. FINITE DIFFERENCE APPROXIMATION

In order to solve Equations (23)–(30) we employ the following finite difference approach.
A staggered grid is used (see Figure 1). The pressure and the rheological functions are positioned

at the cell centre while the velocity components are staggered by a factor of �x/2, �y/2, respectively.
Since the fluid is dynamic, a scheme for identifying the fluid region and the free surface is required.
In order to do this, cells of different types need to be introduced: empty cell (E) if the cell contains
no fluid; full cell (F) if the cell has fluid and has no face in contact with an empty cell face;
surface cell (S) if the cell has fluid and has at least one face in contact with empty cell
faces; boundary cell (B) if it is part of a rigid boundary; inflow cell (I) if it defines an
inflow boundary; and outflow cell (O) if it is designated as an outflow boundary. Figure 2 illustrates
the types of cells that can be present at any one time-step; the empty cells were left blank for
clarity.

The momentum equations (23) and (24) are approximated by finite differences as follows. The
time derivative is approximated by the explicit Euler method and the linear spatial terms are
discretized by central differences. The convective terms are approximated by a high-order upwind
method. In this work, we have used the VONOS method (see Reference [19]). Details of the
implementation of the Vonos method can be found in Reference [20]. Thus, the intermediate velocity
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Figure 1. Cell configuration for a second-order fluid flow calculation.
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Figure 2. Types of cells within the mesh.

ũ(x, t) is calculated from the discretized equations

ũi+(1/2), j = ui+(1/2), j + �t

{
− conv(uu)|i+(1/2), j − conv(vu)|i+(1/2), j −

(
p̃i+1, j − p̃i, j

�x

)

+ 1

Re

[(
ui+(3/2), j − 2ui+(1/2), j + ui−(1/2), j

�x2

)
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+
(
ui+(1/2), j+1 − 2ui+(1/2), j + ui+(1/2), j−1

�y2

)

+�xx
i+1, j − �xx

i, j

�x
+ �xy

i+(1/2), j+(1/2) − �xy
i+(1/2), j−(1/2)

�y

]
+ 1

Fr2
gx

}
(31)

ṽi, j+(1/2) = vi, j+(1/2) + �t

{
− conv(uv)|i, j+(1/2) − conv(vv)|i, j+(1/2) −

(
p̃i, j+1 − p̃i, j

�y

)

+ 1

Re

[(
vi+1, j+(1/2) − 2vi, j+(1/2) + vi−1, j+(1/2)

�x2

)

+
(

vi, j+(3/2) − 2vi, j+(1/2) + vi, j−(1/2)

�y2

)

+ �xy
i+(1/2), j+(1/2) − �xy

i−(1/2), j+(1/2)

�x
+ �yy

i, j+1 − �yy
i, j

�y

]
+ 1

Fr2
gy

}
(32)

where �xx , �xy and �yy are given by (18)–(20), respectively. The operators conv(uu)|i+(1/2), j , . . .,
conv(vv)|i, j+(1/2), represent the convective terms of the momentum equations, respectively. The
terms conv(uDxx )|i, j and conv(vDxx )|i, j are calculated using the VONOS method (see Refer-
ence [19] for details of the VONOS scheme and Reference [20] for details of the finite difference
implementation of this high-order upwind method). The definitions of conv(uu)|i+(1/2), j , etc., are
rather lengthy and for this reason we refer the reader to Reference [20].

The Poisson equation (26) is discretized at the cell centre using the five point Laplacian which
can be written as

�i+1, j − 2�i, j + �i−1, j + �x2

�y2
(�i, j+1 − 2�i, j + �i, j−1) = �x2 D̃i, j (33)

where

D̃i, j = ũi+(1/2), j − ũi−(1/2), j

�x
+ ṽi, j+(1/2) − ṽi, j−(1/2)

�y

The final velocities are obtained by discretizing (25) at the respective nodes, namely

un+1
i+(1/2), j = ũi+(1/2), j −

(
�i+1, j − �i, j

�x

)
(34)

vn+1
i, j+(1/2) = ṽi, j+(1/2) −

(
�i, j+1 − �i, j

�y

)
(35)

4.1. Computation of the rheological functions �xx , �xy, �yy

When computing the tilde velocities through (31)–(32) the values of the rheological functions
�xx ,�xy,�yy are required. They are computed from (18)–(20) as follows.
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The derivatives �u/�x and �v/�y are easily approximated by central differences and are given
by

�u
�x

∣∣∣∣
i, j

= ui+(1/2), j − ui−(1/2), j

�x
,

�v

�y

∣∣∣∣
i, j

= vi, j+(1/2) − vi, j−(1/2)

�y

To compute the cross-derivatives �u/�y and �v/�x we first average u and v at the cell faces and
then apply central differences, namely

�u
�y

∣∣∣∣
i, j

= ui, j+(1/2) − ui, j−(1/2)

�y
,

�v

�x

∣∣∣∣
i, j

= vi+(1/2), j − vi−(1/2), j

�x
(36)

where

ui, j+(1/2) = 0.25(ui+(1/2), j + ui−(1/2), j + ui+(1/2), j+1 + ui−(1/2), j+1)

vi+(1/2), j = 0.25(vi, j+(1/2) + vi, j−(1/2) + vi+1, j+(1/2) + vi+1, j−(1/2))

with similar expressions for ui, j−(1/2) and ui−(1/2), j . However, if the cell (i, j) has one or
more faces in contact with an empty cell faces then �v/�x and �u/�y are calculated by a
forward/backward difference according to which face is in contact with an empty cell face,
for instance,

�u
�y

∣∣∣∣
i, j

= ui, j − ui, j−1

�y
if the face ( j + 1

2 ) is in contact with an empty cell face

�v

�x

∣∣∣∣
i, j

= vi, j − vi−1, j

�x
if the face (i + 1

2 ) is in contact with an empty cell face

The values of ui, j and vi, j are obtained by averaging, namely,

ui, j = 0.5(ui+(1/2), j + ui−(1/2), j ), vi, j = 0.5(vi, j+(1/2) + vi, j−(1/2))

To approximate the terms contained in the material derivative (D/Dt) we first write them in the
form

D(Dxx )

Dt
= �Dxx

�t
+ conv(uDxx ) + conv(vDxx ) (37)

with similar expressions for D(Dxy)/Dt and D(Dyy)/Dt . We shall be investigating flows that
possess a steady-state solution and we assume that the contribution from the time derivative in
(37) is small. Thus, we employ the approximation

D(Dxx )

Dt

∣∣∣∣
i, j

≈ conv(uDxx )
∣∣
i, j + conv(vDxx )|i, j (38)

The same treatment is applied to D(Dxy)/Dt and D(Dyy)/Dt . To effect this, it was necessary to
compute Dxx , Dxy and Dyy everywhere on the mesh.
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Therefore, the rheological functions �xx , �xy, �yy can be computed from the following
expressions:

�xx
i, j = −De

⎡⎣−conv(uDxx )|i, j − conv(vDxx )|i, j + 4

(
�u
�x

∣∣∣∣
i, j

)2

+ 2
�u
�y

∣∣∣∣
i, j

(
�u
�y

∣∣∣∣
i, j

+ �v

�x

∣∣∣∣
i, j

)⎤⎦ (39)

�xy = − 2De

[
−conv(uDxy)|i, j − conv(vDxy)|i, j + �u

�x

∣∣∣∣
i, j

�v

�x

∣∣∣∣
i, j

+ �u
�y

∣∣∣∣
i, j

�v

�y

∣∣∣∣
i, j

]
(40)

�yy = −De

⎡⎣−conv(uDyy)|i, j − conv(vDyy)|i, j + 4

(
�v

�y

∣∣∣∣
i, j

)2

+ 2
�v

�x

∣∣∣∣
i, j

(
�u
�y

∣∣∣∣
i, j

+ �v

�x

∣∣∣∣
i, j

)⎤⎦ (41)

4.2. Finite difference approximation of the free surface stress conditions

Let n= (nx , ny) and m= (ny,−nx ) denote unit normal and tangential vectors to the free surface,
respectively. Then, the stress conditions (5) can be written as

p − 1

Re
[(Dxx + �xx )n2x + (Dyy + �yy)n2y + 2(Dxy + �xy)nxny] = 0 (42)

2

Re
[(Dxx − Dyy + �xx − �yy)nx ny + (Dxy + �xy)(n2x − n2y)] = 0 (43)

We point out that the problems we intend to solve have low Reynolds numbers, and therefore when
applying the conditions above we shall neglect the convective terms from the material derivative
appearing in the computation of the rheological functions �xx , �xy, �yy . In order to apply these
conditions we follow the ideas adopted by Tome et al. [18]. We suppose the mesh spacing is
sufficiently small so that the free surface can be represented, locally, by a linear surface which is
either parallel to one coordinate axis or is at an angle of 45◦ to it. In this case, conditions (42)
and (43) are applied as follows.

(i) Surface cells (S) having only one face in contact with an empty cell (E) face. In these
cells we assume that the free surface is either horizontal or vertical according to which face is in
contact with the E-cell. In either of these cases, the normal vector can be written as n= (±1, 0)
or n= (0,±1). For instance, if we consider the S-cell shown in Figure 3 we take n= (1, 0) and
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i, j+1/2v i+1, j+1/2v

ui+1/2, j
~p

S

S

i, j

E

E

Figure 3. Surface cell having the (i + 1
2 )-face in contact with one empty cell face.

Equations (42) and (43) reduce to

p̃ + 1

Re
(Dxx + �xx ) = 0 (44)

1

Re
(Dxy + �xy) = 0 (45)

respectively.
We observe that when computing the velocity ṽi, j+(1/2) in Figure 3, the values of p̃i, j , ui+(1/2), j

and vi+1, j+(1/2) are required. They are obtained as follows. First we calculate ui+(1/2), j by applying
the mass conservation equation at the centre of the surface cell which gives

ui+(1/2), j = ui−(1/2), j + �x

�y
(vi, j+(1/2) − vi, j−(1/2)) (46)

The value of vi+1, j+(1/2) is then computed by approximating (45) at the cell corner (i + 1
2 , j + 1

2 )

which can be written as

ui+(1/2), j+1 − ui+(1/2), j

�y
+ vi+1, j+(1/2) − vi, j+(1/2)

�x

− 2De

(
vi+1, j+(1/2) − vi, j+(1/2)

�x

�u
�x

∣∣∣∣
i+(1/2), j+(1/2)

+ ui+(1/2), j+1 − ui+(1/2), j

�y

�v

�y

∣∣∣∣
i+(1/2), j+(1/2)

)
= 0 (47)
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or

vi+1, j+(1/2) = vi, j+(1/2) − �x
�u
�y

∣∣∣∣
i+ 1

2 , j+ 1
2

(
1 − 2De

�v

�y

∣∣∣∣
i+ 1

2 , j+ 1
2

)
(
1 − 2De

�u
�x

∣∣∣∣
i+ 1

2 , j+ 1
2

) (48)

The derivative �u/�x |i+(1/2), j+(1/2) is evaluated by using backward differences while the derivative
�v/�y|i+(1/2), j+(1/2) is approximated by central differences at (i, j + 1

2 ). The pressure p̃i, j is
calculated using (44) applied at the cell centre giving

p̃i, j = 1

Re
(Dxx

i, j + �xx
i, j ) (49)

Other configurations of surface cells having only one face in contact with an empty cell face are
handled similarly.

(ii) Surface cells (S) having two adjacent faces in contact with empty cell (E) faces. For these
cells we assume the free surface is 45◦ sloped between the coordinate axes. Thus, on these surfaces
the normal vector takes the form n= (±(

√
2/2),±(

√
2/2)). For instance, if consider the surface

cell shown in Figure 4 we take n= (
√
2/2,

√
2/2). In this case, it can be shown that conditions

(42) and (43) may be written as

p̃= 1

2Re
(Dxy

i, j + �xx + �yy + �xy) (50)

�v

�y
− �u

�x
+ De

(
�u
�y

)2

− De

(
�v

�x

)2

= 0 (51)

where the convective terms in the rheological functions have been assumed to be negligible.

~p
i, j

i+1/2, j
u

ES

v
i, j+1/2

E

Figure 4. Surface cell having the (i + 1
2 ) and the ( j + 1

2 )-faces in contact with empty cell faces.
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The velocities ui+(1/2), j , vi, j+(1/2) and the pressure p̃i, j in Figure 4 are calculated by using
Equations (50), (51) and the mass conservation equation applied at the cell centre as follows.
Equation (51) can be approximated by

vi, j+(1/2) − vi, j−(1/2)

�y
− ui+(1/2), j − ui−(1/2), j

�x

+ De

{(
1

2

ui+(1/2), j + ui−(1/2), j − ui+(1/2), j−1 − ui−(1/2), j−1

�y

)2

−
(
1

2

vi, j+(1/2) + vi, j−(1/2) − vi−1, j+(1/2) − vi−1, j−(1/2)

�x

)2
}

= 0 (52)

Equation (52) and the mass conservation (46) provides a 2× 2-system for the unknowns ui+(1/2), j
and vi, j+(1/2). This system can be solved as follows. First, by introducing ui+(1/2), j from (46) into
(52) we obtain

2vi, j+(1/2) − 2vi, j−(1/2) + De

4

{
1

�y

[
�x2

�y2
v2i, j+(1/2)

+ 2
�x

�y
vi+(1/2)

(
2ui−(1/2), j + �x

�y
vi, j−(1/2) − ui+(1/2), j−1 − ui−(1/2), j−1

)

+
(
2ui−(1/2), j + �x

�y
vi, j−(1/2) − ui+(1/2), j−1 − ui−(1/2), j−1

)2
]

− �y

�x2

[
v2i, j+(1/2) + 2vi, j+(1/2)

(
vi, j−(1/2) − vi−1, j+(1/2) − vi−1, j−(1/2)

)
+ (

vi, j−(1/2) − vi−1, j+(1/2) − vi−1, j−(1/2)
)2]} = 0 (53)

It can be seen that Equation (53) provides two solutions for vi, j+(1/2). However, if �x = �y = h then
the quadratic term vanishes and it can be shown that in this case vi, j+(1/2) is uniquely determined
and is given by

vi, j+(1/2)

= −vi, j−(1/2)− De
8h [(2ui−(1/2), j−ui+(1/2), j−1−ui−(1/2), j−1+vi−(1/2))

2+(vi, j−(1/2)−vi−1, j+(1/2)−vi−1, j−(1/2))
2]

1+ De
4h [2ui−(1/2), j+vi−(1/2)−ui+(1/2), j−1−ui−(1/2), j−1+vi, j−(1/2)−vi−1, j+(1/2)−vi−1, j−(1/2)]

(54)

After computing vi, j+(1/2) using (54), the value of ui+(1/2), j is obtained from the continuity
equation. The pressure at the surface cell centre is then computed from (50), namely,

p̃i, j = 1

2Re
(Dxy

i, j + �xx
i, j + �yy

i, j + �xy
i, j ) (55)
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u
i+1/2, j

S

E

EE

Figure 5. Surface cell having three faces in contact with empty cell faces.

Other configurations of surface cells having two adjacent faces in contact with empty cell faces
are treated similarly.

(iii) Surface cells (S) having two opposite faces in contact with empty cell (E) faces. These cells
do not provide enough information to obtain an approximation for the normal vector. In these cells
we set the pressure equal to zero and use the mass conservation equation to adjust one velocity.
For instance, if the surface cell has three faces in contact with empty cell faces (see Figure 5) we
set p̃i, j = 0 and (in the case when �x = �y) ui+(1/2), j = ui−(1/2), j − vi, j+(1/2) + vi, j−(1/2).

4.3. Time-step control and particle movement

A time-step procedure for calculating the time-step size for every calculational cycle is employed.
This procedure was presented by Tome and McKee [21] for Newtonian flows and is based on the
stability restrictions

�t1 <max

{
�x

Umax
,

�y

Vmax

}
, �t2<

�x2

4
Re (here again it is assumed that �x = �y)

�t = FACTmin(�t1, �t2) where 0<FACT<1

(56)

where Umax = max{|u|} and Vmax = max{|v|}. The factor FACT is employed as a conservative
measure to allow for the fact that the stability analysis has been performed locally and the values
of Umax and Vmax are not known a priori, that is, mass conservation has not yet been satisfied.
Further, details of the implementation of this time-step procedure can be found in Reference [21].
Usually, when simulating Newtonian flows the factor FACT takes the value of 0.5. However, for
second-order fluid flow simulations a more restrictive value is used depending on the value of the
Deborah number De. In the results presented in this paper we used a value of 0.1 for the factor
FACT.

Once the mass conserved velocities have been calculated the last step of the numerical method
described in Section 3 is to update the marker particle positions. The new markers positions are
obtained by solving

dxp
dt

=up (57)
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for each particle by using the explicit Euler method. The particle velocity up is found by performing
a bilinear interpolation using the nearest four node velocities. Details of the particle movement
can be found in Reference [21].

5. CHANNEL FLOW

The finite difference equations described in Section 4 have been implemented into the FreeFlow-
2D code in order to simulate flows of a second-order fluid. In this section, we present results to
partially validate the numerical method.

5.1. Validation

We validate the numerical method presented in this paper by simulating the flow in a two-
dimensional channel. We consider a channel having an entrance with width L and a length 15L
(see Figure 6). At the channel entrance we prescribe a fully developed flow defined by

u(y)=−4
U

L2

(
y − L

2

)2

+U, v = 0, 0�y�L (58)

On the channel walls the velocity field satisfies the no-slip condition while at the outflow Neumann
conditions are assumed. Initially, the channel is empty and fluid is injected at the inflow until the
channel is full and steady state has been reached. It can be seen that under fully developed flow
conditions, the components of the extra-stress tensor (see Equations (17)) reduce to

�xx =−2De

Re

(
�u
�y

)2

, �xy = 1

Re

(
�u
�y

)
, �yy = 0 (59)

We point out that under steady state Equations (58) and (59) are valid throughout the channel.
To simulate this problem we used the following input data: L = 1 cm, U = 1ms−1 and

gravity was neglected (gx = gy = 0). The material properties were 	0 = �0/� = 0.01m2 s−1 and �2 =
0.0045 s. The scaling parameters were chosen to be L ,U and 	0 so that Re=UL/	0 = 1 and
De= �2U/L = 0.45. To demonstrate the convergence of the numerical method we ran this problem
using three meshes: Mesh1—�x = �y = 0.125 cm (8× 120 cells); Mesh2—�x = �y = 0.0625 cm
(16× 240 cells); and Mesh3—�x = �y = 0.03125 cm (32× 480 cells). All the three runs achieved
steady state. The time evolution of the streamlines of the u-velocity obtained using Mesh3 is
shown in Figure 7. Figures 8 and 9 display the values of the extra-stress components �xx and �xy

at different times.

L

15

x

y

L

Figure 6. Domain description for the channel flow simulation.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:599–627
DOI: 10.1002/fld



614 M. F. TOMÉ ET AL.

(a)

(b)

Figure 7. Contour lines for the velocity u: (a) t = 0.1 s; and (b) t = 0.545 s.

(a)

(b)

Figure 8. Contour lines of �xx : (a) t = 0.1 s; and (b) t = 0.545 s.
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(a)

(b)

Figure 9. Contour lines of �xy : (a) t = 0.1 s; and (b) t = 0.545 s.
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Figure 10. Numerical simulation of the channel flow with Re= 1 and De= 0.45 (symbols) using Mesh1.
Comparison with analytic solutions (solid lines): (a) velocity u; (b) extra-stress component �xx ; and

(c) extra-stress component �xy . Results shown at position x = 7.5 cm.

We can see in Figure 7(b) that the streamlines are all parallel indicating that the steady state
has been reached. Figure 10 shows the results obtained for the extra-stress components �xx

and �xy and the velocity component u at the middle of the channel (x = 7.5) using Mesh1

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:599–627
DOI: 10.1002/fld



616 M. F. TOMÉ ET AL.
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Figure 11. Numerical simulation of the channel flow with Re= 1 and De= 0.45 (symbols) using Mesh2.
Comparison with analytic solutions (solid lines): (a) velocity u; (b) extra-stress component �xx ; and

(c) extra-stress component �xy . Results shown at position x = 7.5 cm.
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Figure 12. Numerical simulation of the channel flow with Re= 1 and De= 0.45 (symbols) using Mesh3.
Comparison with analytic solutions (solid lines): (a) velocity u; (b) extra-stress component �xx ; and

(c) extra-stress component �xy . Results shown at position x = 7.5 cm.

and Figure 11 displays similar results obtained on Mesh2. The three results using Mesh3 are
displayed in Figure 12. As we can see in Figures 10–12, the agreement between the numerical
results and the exact solution for the velocity field on all the three meshes is good. However, the
numerical results for the extra-stress components �xx and �xy near the channel walls using Mesh1
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Table I. Channel flow simulation: l2-errors of �xx and �xy

using the three meshes.

Mesh1 Mesh2 Mesh3

E(�xx ) 6.92× 10−2 9.52× 10−3 1.22× 10−3

E(�xy) 1.56× 10−2 1.74× 10−3 2.02× 10−4

do not agree very well with the exact solutions. Nonetheless, as the mesh is refined (see Figures
11 and 12) we observe that the numerical results approach their appropriate exact solutions. This
indicates that, for this simple flow field at least, the numerical method described in this paper does
indeed converge. To further demonstrate the convergence of the numerical method we computed
the relative l2-norm of the errors

E(�xx ) =
∑

(�xx − �xxnumer)
2∑

�xx
, E(�xy) =

∑
(�xy − �xynumer)

2∑
�xy

(60)

using the results obtained on the three meshes. Table I displays the values of the relative errors on
the three meshes and it can be seen that the relative errors decrease as the mesh is refined. Thus,
these results demonstrate the convergence of the numerical method for flow in a channel.

6. NUMERICAL SIMULATIONS

In this section, we perform two numerical simulations that display viscoelastic behaviour: flow
through a planar 4:1 contraction and extrudate swell.

6.1. Numerical simulation of flow through a planar 4:1 contraction

We considered the flow of a second-order fluid through a planar 4:1 contraction. A schematic
diagram of this geometry is displayed in Figure 13. At the fluid entrance we imposed parabolic
Poiseuille flow and assumed that the exit of the narrow channel was sufficiently far downstream
so that the flow was parabolic at the outflow. On the contraction walls the velocity field obeys the
no-slip condition.

To simulate this problem the following input data were employed (Figure 14).
Mesh size: L = 1 cm and �x = �y = 0.125 cm, giving 240× 64 cells within the mesh;
Scaling parameters: U = 1ms−1, L = 1 cm, Poisson solver tolerance: 
= 10−10 (see

Reference [21]).
The kinematic viscosity of the fluid was assigned the values of 	= 1.0 and 	 = 0.1 so that

this problem was solved for Reynolds numbers Re= 0.1 and Re= 1. Furthermore, since we were
interested in observing viscoelastic behaviour we varied the Deborah number by setting the values
of the temporal constant �2 to 0.0, 0.4, 0.8, 1.2 and 1.4; the constant �4 was set to zero in all
of these runs. Consequently, the flow was simulated for Deborah numbers De= �2U/L of 0.0
(Newtonian case), 0.4, 0.8, 1.2 and 1.4, respectively. The results obtained with Re= 0.1 are shown
in Figure 15 while the results with Re= 1 are displayed in Figure 16. We observe in Figures 15
and 16 that, as the Deborah number is increased, so the size of the corner vortex decreased; these
results agree qualitatively with those obtained, for instance, by Phillips and Williams [5] and Sato
and Richardson [8] for the Oldroyd-B model. The results for the case of De= 1.4 are shown in
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8 L

15 L 15 L

2 L

Figure 13. Geometry of the planar 4:1 contraction problem.

Figure 14. Mesh employed for the planar 4:1 contraction problem.

Figure 17 and it is observed that the streamlines in the downstream channel have some wiggles,
which would appear to suggest that convergence to the steady state had not been achieved. This
would appear to point to an upper limit for the Deborah number for the numerical method, at least
when applied to contraction flow.

6.2. Numerical simulation of the extrudate swell of a second-order fluid

The flow produced by a jet as it emerges from a die has practical industrial importance and has
been studied experimentally and numerically by many authors. For example, Tanner [22] (see
also Reference [23]) presented a theory based on the KBKZ constitutive model for predicting
swelling ratios. Various authors have numerically studied extrudate swell: Crochet and Keunings
[24], Caswell and Viriyayuthakorn [25], Ngamaramvaranggul and Webster [26], have employed
the Maxwell model while the Oldroyd-B model has been used by other researchers (e.g. References
[11, 12, 26–29]). In particular, Crochet and Keunings [11] computed the extrudate swell of planar
and axisymmetric Oldroyd-B jets while a detailed study of circular jet swelling for a large range
of relaxation ratios was presented by Bush [29]. Much less has been done using the CEF model.
However, Gast and Ellingson [13] computed the extrudate swell of a second-order fluid. They
employed the commercial finite element code Fidap [14] and obtained results on the extrudate
swell in tubular dies. It would appear that the code FIDAP could not cope with high elastic fluids
since their results were limited to swellings up to 24%.
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(a) (b)

(c) (d)

Figure 15. Numerical simulation of the flow through a 4:1 contraction. Streamlines for the case Re= 0.1:
(a) De= 0; (b) De= 0.4; (c) De= 0.8; and (d) De= 1.2.

To demonstrate that the numerical method presented in this paper can cope with high elastic fluids
governed by the second-order fluid constitutive equation (3) we performed several simulations of
the extrudate swell with increasing Deborah numbers. The input data describing the computational
domain are displayed in Figure 18. On the channel walls the velocity field obeys the no-slip
condition while on the free surface the stress conditions (see Equations (42) and (43)) are imposed
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(a) (b)

(c) (d)

Figure 16. Numerical simulation of the flow through a 4:1 contraction. Streamlines for the case Re= 1:
(a) De= 0; (b) De= 0.4; (c) De= 0.8; and (d) De= 1.2.

according to the treatment given in Section 4.2. At the fluid entrance the velocity is prescribed by
a parabolic profile given by Equation (58) where U = 1ms−1 and the channel width was D = 1 cm
(see Figure 18). The domain size was 15 cm× 3 cm and a mesh size of �x = �y = 0.0625 cm
(208× 48 cells within the domain) was employed. Gravity was neglected and the value of the
kinematic viscosity was taken to be 	0 = 0.01m2 s−1. The retarded-motion constant �2 was taken to
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(a) (b)

Figure 17. Numerical simulation of the flow through a 4:1 contraction. Streamlines for the case
De= 1.4: (a) Re= 0.1; and (b) Re= 1.

Channel wall

D = 1 cmIn
fl

ow

outflow
U  = 

8 cm5 cm

1 m/s D_max

Figure 18. Domain specification for the simulation of the extrudate swell of a second-order fluid.

be 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007 and 0.008 s. The scaling parameters wereU, D, 	0
and �2; consequently, Re= 1 and the Deborah numbers were De= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
and 0.8, respectively. We point out that for the case of De= 0.8 our numerical method did
not converge and wiggles, similar to those obtained for De= 1.4 on the 4:1 planar contraction
flow simulation, appeared inside the channel. However, using a coarse mesh of �x = �y = 0.1 cm
(130× 30 cells within the domain) the simulation of the extrudate swell did appear to lose its
oscillating behaviour. This would seem to suggest that there is an upper Deborah number limit
beyond which convergence is not achieved. The results of these simulations for the cases of
De= 0.2, 0.4, 0.6 and 0.8 are displayed in Figures 19–22, respectively. We point out that for
De= 0.2 the swelling ratio Sr = Dmax/D (see Figure 18) was 1.43 while for De= 0.8 we obtained
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De = 0.2

De = 0.4

De = 0.6

De = 0.8

Figure 19. Numerical simulation of the extrudate swell for various Deborah numbers at t = 0.9 s.
Fluid flow configuration and rendering of the u-velocity.
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De = 0.2

De = 0.4

De = 0.6

De = 0.8

Figure 20. Numerical simulation of the extrudate swell for various Deborah numbers at t = 0.9 s.
Fluid flow configuration and rendering of the component �xx .
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De = 0.2

De = 0.4

De = 0.6

De = 0.8

Figure 21. Numerical simulation of the extrudate swell for various Deborah numbers at t = 0.9 s.
Fluid flow configuration and rendering of the component �xy .
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De = 0.2

De = 0.4

De = 0.6

De = 0.8

Figure 22. Numerical simulation of the extrudate swell for various Deborah numbers at t = 0.9 s.
Fluid flow configuration and rendering of the first normal stress difference N1.
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Sr = 1.86. Thus, we can conclude that the numerical technique developed in this paper can cope
with relatively high elastic fluids that are described by the second-order fluid constitutive equation.

7. CONCLUDING REMARKS

This paper presented a numerical technique for simulating two-dimensional free surface flows
governed by the second-order fluid constitutive equation. The finite difference equations presented
in Section 4 have been implemented into the Freeflow2D [30] code which was then applied
to simulate the fully developed flow in a two-dimensional channel. The numerical results were
compared with the analytic solution and the agreement was found to be good. Mesh refinement was
employed to demonstrate convergence of the numerical technique. Freeflow2D was then applied to
simulate the flow through a 4:1 contraction for Reynolds numbers of 0.1 and 1 and various values
of the Deborah number. The results showed that as viscoelasticity is increased (as represented
by the Deborah number) there is a reduction in the size of the corner vortex. This is in general
agreement with the results published in the literature for the 4:1 contraction flow of viscoelastic
fluids. Finally, we presented the simulation of the extrudate swell problem for various Deborah
numbers. The results demonstrated that the numerical technique presented in this paper can cope
with relatively high elasticity described by the second-order fluid constitutive equation.
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